
oy :

a _

a

< _

~PERFECT COPY The most sophisticated
robots can be created from simulation
programs. We create a very simple program
of our own to demonstrate the principles of
robot simulation

DRESSED TO QL Wereviewthe |
Spectrum-t, the new machine from Sinclair, B06
which answers the keyboard criticisms of the
old machine but leaves a few problems
eee

1) Apart from the keyboard what other new
feature |

has been added to the Spectrum+, and where is it?
PROBLEM SOLVER TK! Solver for the 2) What kind of motor are we using to build the
more expensive micros is the most advanced 804 robot and why is this type more Suitable for the
spreadsheet we have looked at so far _ purpose?

3) What kind of a Would we — tot use |
STARS ON SCREEN Starfinder is a to access an array in the computer’s memory? —
remarkable astronomy program for the BBC 8?) 4) What is the difference between an equation
Micro and Electron processor anda spreadsheet?

COMPUTER SCIENCE

ENDGAME Our Loco RUE same 1 is
now complete as the magical genie sees you 808
safely to the end of the quest

INDEX TO INFORMATION SS
MANAGEMENT SYSTEM A weekly 816
glossary of computing terms

ON LOCATION We continue to develop an
adventure game in BASIC

LAST ORDERS Our machine code
debugger program is almost complete. In this _ 81 Vs
instalment we look at an interrupt
mechanism that transfers control from the
main program to the debugger program

IN THE BEGINNING We begin new |
projects for the Commodore 64 and BBC 81 0)
Micro in which we build a floor robot

: , : INSIDE
REFERENCE CARD We publish the final — pack
part of the Z80 programmers’ reference card COVER -

COVER PHOTOGRAPHY BY IAN McKINNELL

STEVE CROSS

We’ve spent some time in this series
considering the different methods that may
be used to allow robots to act ‘intelligently’.
However, the typical computer user is
unlikely to have access to a robot and
therefore cannot put these ideas into action.
The simple answer is to simulate a robot’s
behaviour by using a computer.

The development of computer technology has led
to an increasing use of simulations: computer
‘models’ may be constructed that will faithfully
mimic events in the ‘real’ world. Most people are
familiar with the idea of flight simulators —
extremely complex devices that enable trainees to
gain flying experience without having to pilot a
real aircraft. But many other activities can benefit
from computer simulation — business forecasting,
engineering operations and physical processes of
all types can very easily be simulated on a

computer model. In some cases, the computer
model can carry out experiments that would be
too dangerous to attempt by any other means. It
might be vitally important to discover what
happens in a nuclear power station when coolant
leaks from the reactor. In this instance, it would
obviously be impossible to use a real power station
for the experiment, so a computer simulation is
used. If the model is sufficiently detailed, it is then
possible to see exactly what would happen if the
leak occurred.

Similarly, in robotics, computer simulations are
used to design new robots. It is obviously possible
to proceed by trial and error — building a robot,
watching how it behaves, and then making any
necessary modifications — but this is time-
consuming and expensive. A computer simulation
allows you to design your robot and monitor its
actions without spending money and without the
physical labour involved in making frequent
design changes.

Moving Together
When robot arms are engaged in
a common task there is a real
need for choreography in order
that they do not interfere with
One another. Here, one‘arm
must pick up and hold the toy in
position while the other picks up
and fixes a drum; the first arm
then places the completed toy in
its packing box. If the movement
of the arms is properly managed
then conveyor belts can be
placed in any arrangement that
suits the rest of the assembly,
whereas a human operator's
ergonomic requirements would
limit this freedom |

THE HOME COMPUTER ADVANCED COURSE 801

Chorus Line |
The complexity of movement
and synchronisation required in
real robotics applications can be
clearly seen in this section of the
Ford Sierra assembly line

COURTESY OF FORD -

improperly programmed robot that spends its

Take as an example a car assembly line, on
which a team of robots works on the cars as they
pass by. All you want to dois to program the robots
so that they will assemble the cars in the correct
manner. However, programming the robots takes
time, and money is lost each time the production
line is halted. You might decide to set up a dummy
assembly line with some brand new robots with
which to develop the new programs. But this, too,
is expensive and can easily lead to another snag —
the problem of robot choreography, which we
considered earlier in this series. It is vital to ensure
that robots working together do not interfere with
each other’s movements. This is not just a matter
of convenience — a large industrial robot capable
of moving heavy loads could easily damage
another robot if it should run into it. And it’s not
only the robots that may be damaged — an

time welding car doors shut would soon prove a
problem! |

The obvious answer is to carry out computer
simulations of each robot’s actions so that the user
can see how they will interact. This way the cost is
low and nothing is damaged. Once the simulation

is complete and everything looks satisfactory, the
programs that have been developed can easily be
transferred to the real robots, which can then be
safely left to carry out their designated tasks.

In this article, we will demonstrate the principle
of robot simulation with a program, Robot Arm,
that simulates a ‘pick and place’ robot arm with
two degrees of freedom. It has no sensors, so you
must guide it yourself, controlling the shoulder
and elbow joints and the grab mechanism in the
end effector, in order to pick up an object and then
place it somewhere else. Additionally, you should
refer back to the maze-solving program detailed
on page 722, which demonstrates how a robot
may be progammed to find its way to the centre of
a maze. This program is, in effect, a computer
simulation of how a ‘real’ robot would attempt to

802 THE HOME COMPUTER ADVANCED COURSE

reach its goal. It mimics the actions of a robot fitted
with a simple touch sensor, and it finds the correct
path by simply advancing into empty spaces until
it meets a dead end, whereupon it returns to the
last junction it encountered and then tries a new
route. This is hardly a sophisticated model, but it
does show how a computer program can be used
to simulate a robot’s movements. The ‘robot’ in the
program obeys a fixed set of rules and ‘maps out’
the environment. If, within the program, the robot
had direct and immediate access to the positions of
all the maze components, it would be able to move
directly to its goal. In our program, it does not have
this information and so must use a trial and error
technique.

Similarly, the Robot Arm program mimics the
behaviour of a robot that has no sensors at all. This
program contains a model of the robot's
environment and a model of the arm itself, and
you must ensure that these two models will
interact only as they would in real life. So you
cannot pick up an object with the arm unless the
arm is positioned correctly. And you cannot move
the arm below floor level, as that would be
impossible if the robot arm was real. Although we
are using computer graphics, in which one line
(representing the arm) may easily cross another
line (the floor), for an accurate simulation it is
essential that these lines do not cross. And when
the robot drops an object, that object must not
remain in its current position — your simulation
must allow gravitational effects. If this is ignored,
you would certainly not be able to develop a safe
simulation of a pick and place robot for handling
eggs! |

ADDING REALISM
There are very few limitations on what can be
achieved using computer simulation — and, in
most cases, the more complex the simulation is the
more fascinating it becomes. Such a simulation
can be even more entertaining than simply playing
with ‘real’ robots, for the simple reason that, using
a simulation, you can design any robot you like;
programming the correct details of the robot and
its world can lead to a better understanding of
robots and of the way in which the physical world
works. Look again at the Robot Arm program.
You will see that when the robot drops an object it
falls to the ground and stays there. To make the
model even more realistic, the program could be
altered so that the object accelerates as it falls, thus
obeying the law of gravity. And perhaps, on hitting
the ground, it should bounce? The possibilities are
many, and the program is there for you to adapt,
adding new and more realistic features to make
your simulation as lifelike as possible.

Designing computer simulations can be very
similar to developing computer games software.
The big difference is that a simulation must
represent the real world as accurately as possible.
Achieving this accuracy may be difficult but, once
achieved, the simulation can be considerably more
satisfying than merely playing a computer game.

>.

4 REM #####*SPECTRUMEX HE XH RHEX

- § REM * ROBOT ARM SIMULATION*
& REM #*###*##*#SPECTRUMHEXXHXEHE*

1@ CLS : PRINT “ROBOT ARM": PRINT : PRINT "THE
CONTROLS FOR THE ROBOT ARM ARE s"
15 PRINT "S- SELECT SHOULDER ROTATION": PRINT

"E- SELECT ELBOW ROTATION": PRINT "“K-ROTATE JOIN
T CLOCKWISE"

2@ PRINT "H-ROTATE JOINT ANTICLOCKWISE": PRINT
"U-GRAB BALL": PRINT "F-DROP BALL"
25 PRINT AT 26,11; FLASH 13"hit a key": PAUSE

@: RANDOMIZE
1666 GO SUB 9566: REM init
1166 GO SUB S50a6: REM input
1266 GO SUB 66606: REM crash
1488 STOP
1506 REM *update jointxy ¥¥¥X#HHERHREX
1556 LET ex=11*#SIN hdl: LET eyvy=11*COS hdl

156@ LET hx=sxtex: LET hy=sytey

1656 LET wx=12*SIN hd2: LET wy=12*COS hd2

- 1660 LET hx=hxtwx: LET hy=hytwy
1696 RETURN
2666 REM * draw arm HHH KKKKKKKEK

2626 INK acol

2656 PLOT INVERSE rubout;sx,sy

2166 DRAW INVERSE rubout;ex,er: DRAW
ubouts;wx,wy: IF blup THEN LET br=FN r¢hy): LET
bc=FN cChx>: GO SUB 2580
2496 RETURN
2566 REM * draw ball HRKKKRKKKKKKEK |
2608 INK bcol
“2658 PRINT AT br,bc; " "Cruboutt+1>
2746 RETURN
2750 REM * drop ball XXX KHHXHHHHKERE

2866 LET rubout=1: GO SUB 200@: LET rubout=6

2826 LET k=INT (xh*RND): IF k>=xs THEN

+wd THEN GO TO 28286

2856 LET br=FN r¢y@+4): LET bc=FN c(k): LET blup
=@: GO SUB 2600: GO SUB 250¢

2990 RETURN
366@ REM x rotate KEKE KKKKEKKEKKKS

3166 LET rubout=1: GO SUB 2608

3126 LET til=dirn¥sr*ai: LET t2=titdirnxer#a2

3156 LET hdi=hdi+ti: LET hd2=hd2+t2

3206 GO SUB 15809

3366 IF ABS hdl>p2 THEN LET ok=@
3326 LET pt=POINT Chx,hy?

3349@ IF pt<>@ THEN LET ok=@: IF br=FN r¢hy) AND

bc=FN cC(hx) THEN LET ok=2

3406 LET rubout=@: GO SUB 20090

3456 INK bacol: PRINT AT 21,6;s#;AT 21,2;FN dthd

12;AT 21,26;3;FN d¢thd2)

3490 RETURN
5@0@ REM * input HEE HKKKEKKKE KKK

53106 IF INKEY$<>"" THEN GO TO 5166

5126 FOR 1=@ TO 1 STEP @

3158 LET aS=INKEY#: IF at>="A" AND at<="Z" THEN
LET at=CHRS (CODE a#+32)

3266 IF at="s" THEN LET sr=1: LET er=@

3226 IF at="e" THEN LET er=1: LET sr=@

32590 IF a$="K" THEN LET dirn=1: GO SUB 3006
5276 IF at="h" THEN LET dirn=-1: GO SUB 3006

3366 IF at="u" THEN IF ok=2 THEN LET blup=1

3326 IF at="f" THEN IF blup THEN GO SUB 2756

5466 IF NOT ok THEN LET 1=2

9456 NEXT 1

5498 RETURN

66868 REM x crash KEKKKKKKEKKKKKKKKE

6186 PRINT AT 8,12; FLASH 13"!!crash!!": BEEP .5
s-o: BEEP 1,-146: RETURN

96060 REM * draw base

7056 PAPER pacol: CLS

916@ INK orcol
9126 FOR k=@ TO y@: PLOT @,k: DRAW xh,@:

9260 INK bacol: LET xs=(xh-wd)/2

9226 FOR K=y@+1 TO y@+tht

9240 PLOT xs,k: DRAW wd,@

9266 NEXT k

9366 INK bcol: GO SUB 25@@: INK acol

940@ PRINT AT 26,1;"SHOULDER" ;AT 26,26;"ELBOW"

9490 RETURN
9560 REM * init HHRK KH KKKKKKKKKKKKE

9556 DEF FN d¢xd=INT (x*186/PI>

9566 DEF FN r¢x)d=21-INT (x78)

9578 DEF FN c¢(xd=INT (x78)

960@ DIM s#$¢32): LET x1l=@: LET yl=@: LET xh=254:

LET yh=174

9626 LET y@=23: LET wd=6@: LET ht=23

9636 LET blup=@: LET be=2: LET br=FN réy@+4)

9646 LET grcol=3: LET bacol=2: LET aca LET b
col=é: LET pacol=?

965@ LET sx=xh/2: LET sy=y@tht+2: LET 11=¢Cyh-ht-

y¥@-2)/72: IF 11>xh/74 THEN LET 11=xh/4

9666 LET |12=11: LET hx=@: LET hy=@

9676 LET p2=PI/2: LET al=PI/32: LET a2=2*al

968@ LET hdi=@: LET hd2=p2

9469@ LET sr=1: LET er=@: LET dirn=1: LET rubout=

@: LET ok=1

9758 GO SUB 300@:

9798 RETURN

KKEKKKRKKKKE

NEXT kK

GO SUB 1586: GO SUB 2066

INVERSE r .

IF k<=xs

IAN McKINNELL

Pick And Place
This program simulates a robot arm that is able to
reach about, pick objects up and place them down in
another location. Your task is simply to pick up the
ball and then drop it. The arm is designed to use co-
ordinates of revolution with two degrees of freedom:
a shoulder joint and an elbow joint. The shoulder
joint can rotate through 180° and the elbow joint
through 360°.

The program is controlled using the following
keys: S indicates that you want a shoulder
movement; E indicates that you want an elbow
movement; the K and H keys indicate whether you
wish the joint of the arm to be rotated clockwise or
anticlockwise. Each press rotates the shoulder joint
through 6°, or the elbow through 12”. U indicates
that you want the arm to attempt to pick up the ball.
This will only be successful if you have managed to
manipulate the arm within reach of the ball. F
indicates that you want the robot to drop the ball

On the BBC Micro make the following additions and
changes:

4 REMHXXHHHEHXSXXBBCEXHXHRHHHERERERE

2 REM ROBOT ARM SIMULATION x
6 REMEXXHXXHRHXHEXBBRC HERE H RHR HKE KER

¢ MODE 1:COLOUR 13@:COLOUR 1:CLS
23 PRINTTABC1S,26)"HIT A KEY" :AS=GETS

1908 GOSUB 9608
2626 GCOL @,acol
2656 MOVE sx,sy
210@ PLOT rubout,ex,ey:PLOT rubout,wx wy:lF
blu p THEN br=hy:bc=hx:GOSUB 2508
2198 RETURN
2208 REM*#**¥*****XGRAB THE BALL¥******x*
(2250 blup=1:rubout=3:GOSUB 2500
2360 rubout=1:GOSUB 2068
26866 GCOL @,bcol :MOVE bc,br
265@ PLOT @,@,bsz:PLOT 8@+rubout,bsz,@

2766 PLOT @,@,-bsz:PLOT 8@+rubout,—-bsz,@
28860 rubout=3:GOSUB 200@:rubout=1
2826 K=INTCxh¥RNDC12)9:31F K>=xs THEN IF k<=xstwd
THEN GOTO 2826
2858 br=y@+5:bc=k:blup=@:GOSUB 2600: GOSUB 2500
3100 rubout=3:GOSUB 2060
33496 IF pt<>pacol-128 THEN ok=@:1F pt=bcol THEN
ok=2

3460 rubout=1:GOSUB 2664
3456 COLOUR bacol :PRINTTAB(C@, 3>s%;TAB(C4,3) ;FNd
€ hd1) ;TABC27,3) sFNd¢hd2)

5916@ IF INKEY$(@) <>" THEN GOTO 519@

9156 aS=INKEYS(@):I1F at>="A"ANDas<="Z" THENatS=CH
R$CASC(a#)+32)

3360 IF at="u" AND ok=2 THEN GOSUB 22806
3408 IF ok=6 THEN 1=2

6108 PRINTTAB(12,3)"!!CRASH!!":SOUND 1,-15,48,1/.
@:SOUND 1,-15,4,20:RETURN
98650 GCOL @,pacol:COLOUR pacol:CLS
9166 GCOL @,o9rcol

9126 FOR K=@ TO y@:MOVE @,k:DRAW xh,k:NEXT k
9260 GCOL @,bacol :xs=(xh-wd)/2
9296 MOVE xs,k:DRAW xstwd,k
7300 MOVE bc,br:GOSUB 2586:COLOUR acol

9400 PRINTTAB(1,2) "SHOULDER" :TAB(26,2) "ELBOW"
9600 st=""sxl=O:y1=8:xh=1800:yrh=1600
9626 y@=10@0 :wd=260 :ht=1900
9638 blup=@:bsz=wd/5:bc=40:br=y0+5

96498 grcol=3:bacol=2:acol=2:bcol=@:pacol=129
9650 sx=xh/2isy=yGtht+2:li=Cyh-ht-y@-2)/2:I1F 11
>xh/4 THEN 11=xh/4

9690 sr=1:er=@:dirn=1 :rubout=1:ok=1

Straight From The Shoulder
Our robot arm simulation
program allows you to move a

_two-joint arm in two dimensions
and pick up an object with it.
When the object is dropped the |
program places it randomly on
the floor. The display shows the
vertical angles made by the
upper and lower arms

‘THE HOME COMPUTER ADVANCED COURSE 803

VARIABLE SHEET

LIZ DIXON

PROBLEM SOLVER

Our spreadsheet series continues with ao
close look at TK!Solver, a modelling
program from the creators of VisiCalc that
takes the spreadsheet concept into a new
direction: equation processing.

As we have seen in this series, microcomputer
spreadsheet programs can be very useful for a
variety of mathematical tasks. For the person
accustomed to working on large row and column
worksheets with a pencil and a calculator, the

_ electronic spreadsheet is an invaluable time and
energy saver. Nevertheless, spreadsheets do have
significant limitations. The row and column
format that is ideal for accounting or other
financial models: is often cumbersome, and at
times useless, for higher level mathematical and
scientific applications. And spreadsheets have a
very rigid structure for handling equations.

Software Arts, the American company that
created VisiCalc, has developed a program called

_ TK!Solver that goes beyond spreadsheets in both
form and function. “TK!’ stands for ToolKit, while
‘Solver’ is the section of code that actually
processes equations. Besides differing from

‘ spreadsheets in screeen format, TK! offers the |

R FUNCT
SUBSHEET

804 THE HOME COMPUTER ADVANCED COURSE

following unique features:
Backsolving — Spreadsheet formulae can solve
for a single variable only. TK! can solve for any
variable in an equation, if it is given enough data to
do so;
Iteration— If a value required to solve an equation
is missing or unknown, you can input a guess that
TK! uses as a starting point. It then solves the
equation through a series of
approximations;
Unit conversion — TK! can convert values from
feet to metres, dollars to pounds, etc., instantly
from conversion tables; —
Mathematical functions TK! has a large
number of these built in.

TKISOLVER WORKSHEETS
The TK!Solver program operates through three
linked worksheets, each with a specific function.
The Variable sheet contains the names of all
defined variables; columns for the user’s input
values and the program’s output values; a place to
indicate associated units, and space for the user to
annotate each variable with a comment. The
Variable sheet appears at the top of the program’s
initial display screen. Each variable is also
described in detail on a separate variable subsheet.
The Rule sheet is used to enter the equations TK!
is expected to solve. An equation can be up to 200
characters long, and must conform to standard
mathematical conventions of notation and
operations. The Rule sheet fills the bottom portion
of TK!’s opening screen. The Unit sheet stores the
information needed to convert the units of
measurement attached to the variables in a model.

TK!Solver uses these three sheets to perform
most of its operations. Other sheets include a
Global sheet, in which the user can customise
some of TK!’s operating procedures; a List sheet
that stores an array of values for variables; the
User Function sheet, for user-defined functions;
and sheets for plotting and printing points or
tables of values. —

CREATING A MODEL
We will begin by creating a very simple model
adapted from the TK!Solver owner’s manual that
calculates mileage and average speed for an
automobile j journey, and converts the values from
imperial to metric units. In TK!’s opening display,
we find the cursor in the Rule sheet at the bottom
of the screen. We begin by defining the Panlables i in
appropriate equations, SO we type:

distance/time=speed

and press Return. Initially,, TK! is set to read

successive

Ww

me

q

FS

variable names from equations directly onto the
Variable sheet above. TK! evaluates the equation
and prints the variables in the Name column on
the Variable sheet in the same order as they appear
in the equation. Then an asterisk is displayed in
the Status column next to the equation. The
asterisk means that the equation is unsatisfied,
because no values have been input on the variable
Sheet. We then enter the second si veclie in the
same way:

distance/fuel=mileage

When this equation has been entered, all five of
the variables defined will be listed in the Name
column on the Variable sheet as shown below.

a and Warianle®

Press the semi-colon (;) key to move the cursor
from the Rule sheet to the Variable sheet, into
which we can now enter values. The cursor
appears in the input column next to our first
variable, distance. The following values are
entered by typing them in the appropriate space,
then pressing Return or the down arrow key.

INPUT NAME OUTPUT
500 distance
8.5 time

speed
14 fuel

| | mileage

The speed and mileage values are left blank for TK!
to solve. Their calculated values will be displayed
in the OUTPUT column. To solve for speed and
mileage, press the exclamation mark (!), which TK!
calls the ‘action’ key. TK! will display the phrase
Direct Solver above the Variable sheet because the
program has been given all the data required to

_ find a direct solution. Shortly, the values for speed
and mileage will be displayed as output. We can
delete the values previously input and obtain a
figure for distance by giving TK! new values for
speed and time, or for mileage and fuel.

UNIT CONVERSION
The values entered in our model so far have no
units attached. We cannot simply type miles, or
gallons, in the unit column on the Variable sheet,

eee

because units may not be used until they have been
defined. We move the cursor into the Rule sheet

by pressing the semi-colon (;) key and then typing
=U. TK! replaces the Rule sheet in the bottom
window with the Unit sheet.
The Unit sheet has four columns:

Add -Offset
The cursor is displayed below the ‘word From. We
can then enter the units we want TK! to know and

From To —- Multiply by

the conversion values as shown below.

: \d

goin conversion

Press =R to restore the Rule sheet, then ; to move
into the Variable sheet. We can now enter the
defined names into the Unit column — m for
distance; h for time; m/h for speed; g for fuel, and m/g
for mileage. Blank all the current values and
replace them with these: 1,247 for distance; 22.5
for time; and 43.9 for mileage. Press ! to solve, and
the metric values are displayed.

Now place the cursor over m in the unit column
and type km for kilometres. Press Return, and TK!
will automatically convert the value of 1,247 for
distance from miles to kilometres, so the value of
distance changes to 2006.423.

We have used only a few of the facilities offered
by TK!Solver in this simple model. In the next
instalment, we will look at a more sophisticated
model, using TK!’s function and plotting abilities.

THE HOME COMPUTER ADVANCED COURSE 805

IAN McKINNELL

Six Of One 7
Following the current fashion for
‘bundling’ software with home
micros, Sinclair includes an
impressive software six-pack
with the Spectrum+ (and the
Spectrum 48K). It comprises a
word processor, spreadsheet,
two games, and two graphics
packages — at least £30 worth
of good-quality software

rel. HARDWARE/SPECTRUM+ —

DRESSED TO QL

The Sinclair Spectrum has proved to be the
most successful home computer ever in the
UK. However, the machine has begun to
appear a little outdated and unimaginative
next to stylish rivals like the Amstrad CPC
464 and Commodore Plus/4, and Sinclair
has responded by dressing the old machine
up in new clothes.

At its launch in the spring of 1982, the Sinclair
Spectrum offered outstanding value for money. Its
only real rivals were the Vic-20, with a meagre 3.5
Kbytes of user memory, and the Texas TI99 4A,
which sold at twice the price. At £175, the
Spectrum was an instant hit with first-time buyers
as well as being the natural choice of the thousands
of micro enthusiasts who had outgrown their
ZX80s and ZX81s. The new machine had an
astounding 48 Kbytes of memory, used a good
BASIC, and offered eight colours for graphics, as
well as a primitive sound facility. The keyboard,
too, was a vast improvement on the ‘touch-
sensitive’ flat plastic sheet of the ZX81. Initially
available by mail order only, the Spectrum was an
instant success, and rapidly became the country’s
best-selling micro.

In the two and a half years since the Spectrum’s
launch, Sinclair’s competitors produced a range of
machines to challenge the Spectrum’s market
dominance. Despite having a decidedly inferior
BASIC, the Commodore 64 was the most successful
challenger; it offered more memory (although
machine code was needed to make the most of

806 THE HOME COMPUTER ADVANCED COURSE

y

this), superb sound and a ‘real’ keyboard with
typewriter-style moving keys. The BBC Micro,
too, offered superior specifications, but its £400
price prevented it from being a serious threat, and
its manufacturers chose not to lower its price.
However, a succession of Commodore price cuts
reduced the cost of the 64 from an initial £340 to
£150; Sinclair reacted by dropping the Spectrum
to £130. .

By this time, the Spectrum keyboard — once
such an attraction — was now a decided drawback.
The machine’s software base was unsurpassed,
and many ‘serious’ packages were produced for it.
However, trying to use word processing programs
with the Spectrum keyboard was like typing with
mittens on. Many users, therefore, invested in
‘proper’ keyboards, and this trend accelerated
when the long-awaited Interface 1/Microdrive
unit finally appeared. It soon became apparent
that the micro users of 1984 were no longer
prepared to accept the Sinclair idea of what
constituted an acceptable input device.

SPECTRUM FACELIFT
Sinclair Research’s response has been to give
the Spectrum a facelift. The Spectrum+. is
essentially the same machine, but housed in a cut-
down QL keyboard, with a few extra keys, a Reset
switch and a couple of retractable legs. All of the
peripherals produced for the older version should
work with the ‘Plus’, but Sinclair has failed to take
the opportunity to bring the Spectrum’s
performance more in line with the competition by
improving the sound, or providing a monitor
socket or a built-in Interface 1. The sound
capabilities of the machine are now its greatest
handicap. The two legs do allow a little more
volume to escape from the machine’s base but this
is More an annoyance than a convenience as it
means that the LOADing and SAVEing noises are
also magnified. The Spectrum’s pathetic BEEPing
is still woefully inadequate.

The Spectrum-+ measures 319 by 149 by 38 mm
(12% by 5% by 1’4in). The new design makes
programming easier by providing extra keys for
‘Extended’ and graphics mode, true and inverse
video, Delete and Break keys, and separate keys
for commonly used punctuation symbols like the
semi-colon, quotes, comma and full stop. An
extra Symbol Shift key has also been added, and
the cursor keys are now allocated new places
alongside a small Space bar. All the old key
combinations still work. For veteran Sinclair users
the new design may cause a few problems. In
particular, the new Edit key is situated next to the
A’ key; if this is hit by mistake when a long

=

CHRIS STEVENS

program line is being entered, the line will be lost.
As part of the repackaging, Spectrumt

purchasers receive a ‘six-pack’ of programs —
Psion Chess, Make-a-Chip, Scrabble, Chequered
Flag, Vu-3D and the excellent Tasword Two word
processing software. All of these programs are of a
very high standard. Unfortunately, the same
cannot be said for the new Spectrum
documentation, which, although beautifully
presented, lacks the depth of the old Spectrum
manual. The publishers do suggest, however, that
as users become more proficient with the machine,
they can send away for more comprehensive
manuals, costing £7 each.

For games playing, the new version is certainly
better than the original, but then most keen
players will have invested in a joystick and
interface. Both the Kempston and Fuller
interfaces work with the Spectrum-+, although, as
on the older machine, the use of the Fuller
Soundbox may stop some software from running.
The Kempston Centronics interface performs
perfectly, as well, as does the Wafadrive mass
storage system. |

The Spectrum-+ is certainly an improvement on
the original Spectrum, but Sinclair’s idea of what
constitutes a reasonable keyboard is not going to
meet with universal approval. Although it might
be considered a clever move on Sinclair’s part to
utilise QL technology in a bid to make the
Spectrum more attractive to buyers, with a £50
price increase the new keyboard should be
compared with the already available add-ons.
Using such a criterion it cannot be considered
good value for money. The new machine certainly

looks more stylish, but the keys, despite being
‘sculpted’ to make keying easier, are unresponsive
and too crowded.

For first-time buyers, the Spectrum+ is
certainly worth considering, but the facilities
offered may not be considered worth the extra
£50. The cynical might say that Sinclair has
introduced the Spectrum+ purely as a way of
increasing prices — it would hardly be surprising if
the original model was soon phased out. In fact,
the introduction of this model is a strangely half-
hearted gesture by Sinclair; it would surely have
made more sense to have cut the price of the older
version (and of the Interface 1/Microdrive
package) and left it alone. On the other hand,
Sinclair could have increased the price slightly
more and included all the things the Spectrum
really needs, such as proper sound facilities, a
moving-key keyboard, monitor socket, and
perhaps'a built-in Microdrive. But then it would
never have been ready in time for Christmas . . .

THE HOME COMPUTER ADVANCED COURSE 807

IAN McKINNELL

Our project to design an adventure game
using LOGO has reached its final stage.
Having defined the various locations used in
the game, and written procedures to move

| between them, we conclude by developing
routines to deal with the necessary detail of
the adventure story. _

Our Shrine of Zoltoth game has only two ‘perils’
incorporated in it. In ROOM.4, the player is faced
with a large unfriendly snake, and the program
branches to a special ‘peril’ procedure:

TO SNAKE.ATTACKS
PRINTL [[THERE IS A HUGE SNAKE] [SLOWLY
MOVING TOWARDS YOU!]]

END

The other ‘peril’ does not place the player in any
immediate physical danger, but certainly could.
cause long-term problems:

TO GATE
PRINTL [[A GREAT GOLDEN GATE CLOSES

) BEHIND YOU] [CUTTING OFF THE SOUTHERN
EXIT]]
MAKE “PERILS []
MAKE “EXIT.LIST [[N 7] [E 8]]

END

Other considerations need to be taken into
account at certain places in the program. The GET
procedure must be altered so that you cannot pick
up the ring if you are carrying the sword.

TO GETIT :ITEM
3 —— IF:ITEM = “RING THEN GET.RING STOP

ADD.TO.INV :ITEM
REMOVE.FROM.ROOM :ITEM

END

TO GET.RING
|F MEMBER? “SWORD :INVENTORY THEN
PRINT [YOU ARE UNABLE TO LIFT
THE RING] STOP
ADD.TO.INV :ITEM

: REMOVE.FROM.ROOM :ITEM 7
: END

This is the only restriction on the player picking up
an object. The following routines allow you to
examine whatever it is you are holding.

TO EXAMINE :OBJ
IF :OBJ = “RING THEN RING.DESC STOP
IF :OBJ = “CHEST THEN CHEST.DESC STOP
IF :OBJ = “SWORD THEN SWORD.DESC STOP
PRINT [YOU SEE NOTHING SPECIAL]

END

808 THE HOME COMPUTER ADVANCED COURSE

TO RING.DESC |
IF HERE? “RING THEN PRINTL [[ON THE RING |
IS A FADED INSCRIPTION:] [R-— —E]] ELSE sf
PRINT [I SEE NO RING] :

END |
TO HERE? :OBJ | |

IF MEMBER? :OBJ :CONTENTS THEN OUTPUT 3
“TRUE IF MEMBER? :OBJ : INVENTORY THEN
OUTPUT “TRUE
OUTPUT “FALSE |

END |
TO CHEST.DESC

PRINTL [[IT IS BEAUTIFULLY MADE] [AND
CLEARLY W UNE] [A TINY 7
SKULL IS € R OF THE |
LID]]

END

TO SWORD.DESC
IF HERE? “SW
STEEL) ELSE Py

END

AY _ ‘

Be
. _
7

_

ee 2 _ 7, a

a,

Pain T[ITISMADEOF =
1:SWORD]

players who beliows in
anything other than
computer reminds you that you ¢

TO DEAD |
PRINT [YOU ARE DEAD!] |

7

4

i’

PRINT1 “?
MAKE “INPUT COMMAND
IF (:INPUT = “START) THEN START STOP
PRINT [COME OFF IT!]
DEAD

END

TO COMMAND
MAKE “INP REQUEST
IF :INP = [] THEN PRINT1 “? OUTPUT
COMMAND
OUTPUT FIRST :INP

END

Rubbing the ring makes the genie appear:

TO RUB :OBJ
IF :OBJ = “RING THEN RUB.RING STOP
PRINT [IT’S NOW MUCH CLEANERTHANIT — .
WAS]

END

_TO RUB.RING
IF HERE! “RING THEN
NO RING]

END

The genie offers
invitation 1s decli

at random to a

TO GENIE
PRINTL

NIE ELSE PRINT [I SEE

but if the
blows you
he cave:

] PDO

RETURN El
END

TO RETURN
PRINT [HOM
|F MEMBER? “SC
PRINT [CONGRATU
SCEPTRE!] ELSE PRINTL [|
ESCAPED WITH] [YOUR LIFE]

END |
TO BLOW

PRINT [THERE IS A MIGHTY RUSHING WIND]
PRINT °
MOVE1 (6+ (RANDOM 5))

END

The only thing that can be opened is the chest, and
this contains a poisonous spider. The skull on the
lid is a warning not to open it — but some people
never learn!

TO OPEN :OBJ
IF :OBJ = “CHEST THEN OPEN.CHEST ELSE
PRINT [YOU CAN’T OPEN IT]

RY THEN
FINDING THE

LL AT LEAST YOU

Finally, here is a list of all the nouns in the game:

TO SWORD >
OUTPUT “SWORD

END
TO CHEST

OUTPUT “CHEST
END

TO SCEPTRE
OUTPUT “S

END
TO RING

OUTPUT
END

TO SNA
OUT

END

If you wish t
continuing late
the entire conte
Everything will b

In many ways
programming adve
problem, however — t t not enough room
in present day implementations of the language.
The game given here barely fits within the memory
allocation for the Commodore 64. Any extensions
beyond this are going to demand compromises
over which words to keep and which to reject.

ADVENTURE.
language for

. There is one

THE HOME COMPUTER ADVANCED COURSE 809

LIZ DIXON

In this instalment of Workshop we begin a
new project: the construction of an
accurately controllable floor robot with
proximity and light sensors. In this first
section we outline the scheme of the overall
project and detail the mechanical
construction of the robot body and motor
assemblies.

In this new project we shall be constructing and
designing software for a floor robot vehicle. The
robot will be powered by two stepper motors,
driving two wheels through a gearing system. The
stepper motors we shall be using can be controlled
to turn through discrete steps of 7.5°. Putting the
motor drive through a 25:2 ratio gearbox means
that the vehicle wheels will be accurately
controllable to an axle rotation of 0.6°. As stepper
motors operate by turning through a discrete angle
each time a pulse is received, they are ideally suited
to control by a digital device. We shall be using the
computer’s user port as our digital control source,
allowing us to design simple software to use in
conjunction with the robot. In addition to being
equipped with stepper motors, the finished robot
will have a range of sensors, including proximity
sensors and a pair of light sensors to allow the
robot to follow a line. As four user port data lines
are required to control the vehicle motors, only
four more lines are available for inputs from
sensors. To allow maximum flexibility, the robot:
will be fitted with a ‘patching’ system. This means

that different combinations of sensors can be
connected to the four available data lines by
means of a number of sockets mounted on the
robot and the use of short patch leads. For
example, one application may require all four
proximity sensors, where another might require
two proximity sensors and two light sensors. With
the patching system the required sensors can be .
plugged directly into the relevant data input lines.

As accurate control of the robot is possible and
sensors are fitted, we shall also be undertaking the
design of some sophisticated software to allow the
creation of an internal map of the robot's
immediate environment. We can then start to
investigate the intricacies of route-planning and
search strategy algorithms. In this first instalment
we start the mechanical construction of the robot.
This is reasonably straightforward, involving the
drilling and cutting of the plastic box that forms
the casing and the chassis of the robot; the
positioning of the gear train and d-plug mounting
holes must be accurate, but the location of the
rocker feet is not critical.

810 THE HOME COMPUTER ADVANCED COURSE

PATCH SOCKETS ..

25:2 RATIO GEAR TRAIN

PATCH CORDS

D PLUG CONNECTOR

KEVIN JONES

MICROSWITCH CONTACT SENSORS

BALANCING FEET

THE HOME COMPUTER ADVANCED COURSE 811

812 THE HOME COMPUTER ADVANCED COURSE

So far in our a
project, we have developed a map of the
locations that form the basis of a game and
written a utility routine that formats output
to the screen. We are now in a position to
design routines that describe locations
within the game and allow the player to
move between locations

The basic description of each location is held in the
array LNS() (see page 767) and can be accessed
simply by specifying the number of the location
arrived at. In Haunted Forest, the position held by
the player at any given time is stored in the variable
P, and, therefore, the description of that location is
stored in LNS(P). When the location data was first
designed the description’s final grammatical
context was kept in mind; the description always
being phrased in such a way that it could be
prefixed by “You are...’. For a given location, P,
the description can be formatted and output to the
utility developed in the last instalment, by
combining ‘You are’ with the description held for
that location in the array LNS(). Line 2010 in the
Haunted Forest listing shows this.

In addition to the basic description of the
location arrived at, the player will also want to
know if any objects are present. The objects used
in the game are stored — together with their initial
positions in the inventory — in a two-dimensional
array, IVS(,). For example, IVS(N,1) holds the
description of the Nth object in the inventory, and
IVS(N,2) holds its position. If we wish to determine
whether or not there is an object at a particular
location we must search through the inventory,
checking each object’s position against the number
of the location that is being described. As there are
only three objects in Haunted Forest and eight
objects in Digitaya, a simple linear search using a
FOR...NEXT loop can be implemented.
Lines 2040-2080 show the search loop used in

Haunted Forest. The second column of the
inventory array is scanned for a match with the
current location, P. When a match is found, then
the corresponding description is added to the
sentence that describes the objects. As more than
one object may be present in any one location, we
must allow for the construction of a sentence
where a list of objects is given, each separated by a
comma. By using SPS, initially as a null string, and
later as a comma, we can insert the correct
punctuation between each item. A flag, F, initially
set to zero, is set to one to signal the fact that an
object match has been found during the search. If
the flag remains at zero at the end of the search,

ON LOCATION ©
then no objects are present, and this fact can be
output to the player — as in line 2090 of Haunted
Forest. |
Saae REM *«k%e% DESCRIBE LOCATION *x*x

2Qig SN#="VYOU ARE "+LN<P >? GOSUBS500

e@2e0 SNS="YOU SEE ”

2030 FEM ** CHECK INVENTORY FOR OBJ xx

240 FHQ:srpyg=""

2950 FOR I=i TQ 2

2Q6O@ IF VALCIV$(1,2)3<>P THEN 2688

2070 SN#=SNSt+SP$+"A "+IVSCI, 1) °F =1°SPs=", "

eae NEXT I

2090 IF F=0@ THEN SN®=SN#+"NO OBJECTS”

2100 GOSUBS560@:REM FORMAT OUTFUT

2110 RETURN

The data containing details of the possible exits
from each location is held in the array EX$(). Each
string value is made up of eight digits. By
subdividing these eight digits into groups of two,
we obtain — working from left to nght — the

Location Detail
INVENTORY

‘A Room With A View
The details of the locations in
Our adventure game are held in
three string arrays, which
contain object names and
whereabouts (VS), location exits
(EXS) and descriptions (LNS).
EXS (34), for exampie, might
contain the eight-digit number
33390027, showing that
location 34 connects to
locations 33,39 and 27 by its
‘north, east and west exits .

respectively. LNS(34) contains
‘The Middle Of Memory’,
which describes location 34.
IVS(2,2) contains the number
34, showing that IVS(2;1) — The
Key — is in location 34. Given
the current location number the
program assembles this
information into a description

DESCRIPTION

KEVIN JONES ~

THE HOME COMPUTER ADVANCED COURSE 813

9
ke}

°
°
°
°
is)

00000000 °

direction.

23060 REM **** DESCRIBE EXITS S“R *%x

23148 EXS=EXStP dD

2320 NR=VALCLEFTSCEXS,23)

If there is no exit in a given direction, the value
| 3 assigned is zero — and this is a great help with the

description of the exits. A preliminary check must
be made to see if any exits are possible before
starting to construct the sentence “There are exits
tothe...’. This can be done by performing a logical

Sra | OR on all four direction variables, and this will only
produce a zero result if all four direction variables
are zero. If this is not the case, then the routine
continues to test each direction variable in turn. If

ver _ the variable is non-zero then the corresponding

3 numbers of the locations lying to the north, east,
. | south and west of the current location. In order to

determine which exits are possible, the program
first splits the eight-digit string into the four
numbers that describe which location lies in each

2330 EA=VAL(MIDS(EX#,3,2))
2340 SO=VAL(MIDS(EX$,5,22)
2350 WE=VALCRIGHTS(EX#,2) 2}

direction is added to the sentence.
2355 IFCNR OR EA OR SO OR WE)=@ THEN RETURN

2360 PRINT:SN#="EXITS ARE TO THE "

2370 IF NR

eoeO) iF Em

esag IF S@

24060 IF WE

2410 GOSUB

, 2415 PRINT

P4220 RETURN

Now that we have developed routines that
: describe each location, we can develop procedures

that will allow the player to do things within the
world we have created. In a future instalment of
the project, we shall be considering more detailed
algorithms that analyse instructions. For now, we
will deal with the movement instructions the

: player can issue by simply entering a one word
direction command, such as ‘NORTH’ or
‘SOUTH’. If such an instruction is passed to a
movement subroutine as the variable NNS, then

<>@ THEN

<>?@ THEN

©>@ THEN

¢2>@ THEN

D508: REM

SNSE=SNS+ "NORTH ”
SNS=SNS+ "EAST "
SNS=SNS$+"SOUTH "
SN#=SNS+"WEST "
FORMAT

| _ the movement routine is as follows:

35@@ REM **** MOVE S/R 44%
3510 MF=1:REM SET MOVE FLAG
3520 DR#=LEFT#(NN#, 1)
3530 IF ORS<>"N"ANDDRS< > "E"ANDDRS< >"S "ANDDRS< > "W"

\ THEN GOTO3596

: 2540 IF OR#="N"AND
= 3558 IF OR#="E"ANO

3560 IF OR#="S"AND
3570 IF OR$="W"AND

NR<>@ THEN P=NR

EA< >@ THEN P=ERA

SO<>0@ THEN P=S0

WE<?@ THEN P=WE

3580 PRINT:PRINT"YOU CAN'T ":1S#
3585 MF=@:RETURN
359@ REM ** NOUN NOT DIRECTION xx
3690 PRINT"WHAT IS "ZNNSF" 2"
3618 MF=@0:RETURN :

This routine actually uses only the first letter of the
| | direction command passed to it. It begins by

checking that the command is, in fact, a direction.
If so, the direction specified in the command is

, acted upon. After ensuring that there is an exit in
_ that direction, P — the variable that keeps track of

the player’s position — is changed to the value of
Re : NR, EA, SO or WE.

814 THE HOME COMPUTER ADVANCED COURSE

| Before we can use the subroutines that we have
developed here, however, we need to tie them all
together to form a repeating loop. The flowchart

RETURN

RETURN

RETURN

RETURN

shows the logical structure of this main calling
loop. Although this is not the final structure of the
main program loop it serves to demonstrate the
aspects of the program covered so far. To use the
subroutines given here, insert the following lines,
which form a part of the main loop.

2860 GOSUBGOOO:REM READ ARRAY DATA

210 P=INTCRNDC(TID*104:192:REM START POINT

230 REM «*e* MAIN LOQP STARTS HORE *k#x

240 MF=@:REM MOVE FLAG |

245 PRINT

250 GOSUB2000:REM DESCRIBE FPOSITION

255 GOSUB23@0:REM DESCRIBE EXITS

260 PRINT: INPUT" INSTRUCTIONS"; I1S®

Also include the following lines in the main calling
loop: ?

270 NNS=ISS:GOSUB 3500:REM MOVE
280 GOTO 230:REM RESTART MAIN LOOP

K

<
§
0

2
re
?
0)
“
®,

£

se
~,

as as
SRE
Sa oe

ee

SPECTRUM VARIATIONS |
Because the Spectrum holds all string arrays as
fixed-length strings, problems arise when we wish
to print out an element of a string array as part ofa
larger sentence. When dimensioning an array on
the Spectrum, the last number in the statement
defines the length of each element in the array. For
example, DIM a$(3,2,20) dimensions a three-by-
two element array, with each element having a
fixed length of 20 characters. If we assign an
element in the array to a string with less than 20
characters, then the difference is made up by
adding spaces to the end of the string. This wastes
precious space in memory. Therefore, to insert
Spectrum string-array variables into sentences, we
must first of all remove any trailing spaces.
Spectrum users should type in the following
routine to do this in the Haunted Forest listing:

7000 REM **** SPECTRUM TRUNCATE ****
7010 FOR I-LEN(AS) TO 1 STEP -1
7020 IF AS(I TO 1)<>* ” THEN LET N=t:LET I=1
7030 NEXT |
7040 LET SS=SS+AS(TO N
7050 RETURN

For the Digitaya listing, type in these same
commands, but use line numbers 8500 to 8550.

This routine truncates AS, removing any trailing
spaces, before adding it to S$. Remember that S$
is the string variable used to assemble a sentence
for formatting. To use this routine, we must pass
the string-array element (to be incorporated into —
the sentence) to the variable AS, and then call the
subroutine. Therefore, we must make the
following alterations to Spectrum versions of
Haunted Forest and Digitaya:

Haunted Forest:
2010 LET SS=“YOU ARE ”:AS=LS(P):GOSUB7000:

GOSUB 5500 . |
2070 LET SS=SS+PS$+“A ”: AS=VS(I,1):

GOSUB7000:LET F=1:LET PS="“, ”

Digitaya: :
1450 LET SS=“YOU ARE ”:AS=LS(P):

GOSUB8500:GOSUB5880 |
1500 IF VAL(VS(I,2))=P THEN LET SS=SS$+P$+“A”

-AS=VS(11):GOSUB8500:LET F=1:LET PS=* ”

rea

ee

Se fees

eines See eee

Tce ee

=

mae

eer

mic

eet
He
oe

ae es

eas . ets ae
ie

eas

a
ae

&%

na fs a

ie Ge ta A
a

faand
eeu!

eae

eae Wel GARE
Sates ee

neo

i
ge

2)

as ee

oe

t
:
i

fee
ai
i

sae at

By
eH

Bee
& ate
ait sage

Ruane
eee

a oe

~ OE
i

ep oe

aE

Bal

ie Hi

a
ia
ms) led a ie

=
aH

os pee

Eon

ye
a

en
ha 8 ei i

is ne inane ee aeee
ee a

§

oe Git
eee

Ee ie
a

ea eee a

THE HOME COMPUTER ADVANCED COURSE 815

rane
i

shafted oo

SS
eae sath oe al

eRe
sea
aie

ia

pens
ea

ae
eee
oa
ie) i

00000000

Index Linked
The index file consists of the key
fields of the data records, sorted
in the same order as the main
file. A record is located by
searching the index file for the
key and then skipping the
appropriate number of records
in the main file. Records are
deleted temporarily by marking
them in the index file; from time
to time the main file willl be re-
sorted to take account of
changes, and the deleted
records will then be permanently
removed

INDEX
~ The word index has several different definitions in

computing. The first refers to a number or item of
data in a list that indicates where a piece of
information can be located. For example, a BASIC
array contains a number of different elements, and
each of these can be separately accessed by
selecting a number associated with that element.
This number is referred to as ‘the index’. In
machine code, an index is a number held in an
index register. ‘This index is the number that must
be added to a particular address, which then points
to another address — the contents of which are to
be modified. This method of addressing is used for
processing arrays. |

INDEXED FILE |
As its name implies, an indexed fileis simply a file
whose organisation is dependent on an index.
Indexed files may be organised so that the index is
separated from the file itself — as in a book index.
In computing, this type of indexed file may be
found on a floppy disk, on which a specific track is
set aside for the directory of the disk’s contents.
Each time the disk is accessed the directory is
examined to discover the required file’s location.
A common and important file type is the

indexed sequential file. Here, a sequential file is
stored in sorted order, and an index file is created
from it, consisting of the sort key field from each
record of the original file, in the sorted order.
Records are located by searching the index file for
the desired key field; its position in the index is the
same as the parent record’s position in the
sequential file. This can now be accessed
reasonably quickly by skipping the appropriate

AS

INDEX REGISTER pica pee
An index register is an area set aside within the
central processing unit (CPU) ofa microcomputer
for the storage of the index currently being used by
the program. This is particularly useful for
‘indexed addressing’. In this method of addressing,
the number held in the index register is added to
the address specified in the instruction, and the
sum of the two numbers is the address to be
accessed by the computer. For example, the
instruction LDA BASE,X will LoaD the Accumulator
with the contents of the address whose value is
equal to BASE + the contents of register X.

number of records from the start of the file. The.

technique was first developed for mainframe tape-
based systems in which the whole index file could
usually be held and searched quickly in memory;
the parent file would generally contain too many
lengthy records to fit into available memory.

Andrews

fot
Pome

11

816 THE HOME COMPUTER ADVANCED COURSE

VIN JONES
Lu
=u

This technique is mostly used to access a table of
numbers (an array). A number of instructions, or _
op-codes, are set aside specifically to manipulate
the numbers held within index registers. An index
register may also be used as a general-purpose
register. This means that the register can be used
by the programmer as a short-term storage device
for numbers. Used in this way, an index register
can cut both memory use and processing time
appreciably. The alternative is to have the
processor store the number in RAM — a
process that is time-consuming and occupies
valuable memory space.

INFORMATION HIDING
Information hiding is a concept relating to
structured programming. The principle behind
this method of programming is that a program
should be constructed of individual modules that
are self-contained, and which can easily be
understood and modified. Furthermore, the
information and decisions taken within a module
should, as far as possible, be exclusive to that
module. This is known as ‘information hiding’
because the information or decision is ‘hidden’
from the rest of the program. This concept was first
developed by David Parnas, who proposed that all
modules within a program should ideally contain
only one decision.

INFORMATION MANAGEMENT
SYSTEM | :
An information management system is designed
to deal with the organisation of information within
a system. It is often used with databases, which are
themselves ways of organising data. The
information must be stored in such a way as to
allow fast and easy access by the user. ‘This means
that the system must not only be able to store the
information but must also maintain an index
system to allow that information to be retrieved
efficiently. However, an information management
system is more than simply the location, storage,
retrieval and cataloguing of data. Although
databases are within the field of IMS, the term is
more broadly based, encompassing such features
as the computer’s operating system and memory
management, as well as other programs in which
data is constantly being changed and updated.
IMS, combined with distributed processing, is the
most important influence on data processing.

a

There -are three commands for our
debugging program that are yet to be
designed. Before we look at these, however,
we will consider the interrupt mechanism
used to transfer control between the
debugging program and the program being
debugged at the breakpoints. We will also
design the initialisation procedure.

The interrupt gecienicnn| is used at Beau poisiein
the original program, where we have replaced an
instruction with an SWI (SoftWare Interrupt) op-
code. The SWI, like the other interrupts on the
6809, is vectored through a specific memory
location — namely, SFFFA. This means that when
an SWI is executed the registers are saved on the
stack and the processor loads the 16-bit address at
SFFFA and SFFFB into the program counter (PC).
Execution then continues from that address. Our
task is to change this vector so that it points to the
entry point of our debugger program. One
problem here is that interrupt vectors are almost
always held in ROM. The fact that these addresses
are fixed, therefore, means that the operating
system must have some other means of vectoring
interrupts.

The normal system is to have a jump table (see
page 639) held in an area of ‘scratchpad’ RAM,
which is memory that is not normally available to
programs but is reserved for use by the operating
system. The address pointed at by the vector
contains a JMP instruction followed by an address,
which normally will point back into the operating
system. However, we can change this address to
the one we want so the first instruction executed
after the software interrupt will be a JMP to the
entry address of the debugger. We must be careful
to replace the original contents of the jump table
before our program finishes executing, because it
is always possible that the operating system will
execute an SWI subsequently. It is worth
remembering that the 6809 has three software
interrupts, and there is no reason why either SWI2
(op-code 10 3F and vector at SFFF4) or SWI3 (op-
code 11 3F and vector at SFFF2) should not be used
— although the fact that these use two-byte op-
codes makes some changes necessary in the
debugger program.
A further problem is that our program can only

occupy whatever memory is left free by the
program we are debugging. The debugger must |
therefore be relocatable. You will have noticed
that all references to memory locations in the
program have been (or should have been) made
using pei counter relative addressing. The

LAST ORDERS

oroblegi is that at some point we must know the
absolute address of the program entry point so that
we can place it in the interrupt jump table. This
address must be calculated at run-time, since the
assembler cannot deal with it.

Our first task then is calculating this address and
inserting it into the jump table. Note that the entry
point address for SWI will be different from the
start address of the debugger program, because
the routine at the program start address must
handle this initialisation procedure, which will not
be needed when we re-enter the program via SWI.
Accordingly, we will handle all the initialisation
within a subroutine; the entry point will then be
the address containing the instruction after the
BSR call to this subroutine. Very conveniently, this
address is precisely the one saved on the stack by
the BSR call so we can read it from the stack in
order to place it at the appropriate point in the
jump table.

The other job of this initialisation procedure is_
to obtain the start address of the program to be
debugged. Here is the completed design:

INITIALISATION PROCEDURE
Data:

Vector-Address is the address to be found at

SFFFA in X
JMP-Opcode is the op-code for the JMP

instruction in A
Entry-Address is the address of the entry point in Y
Start-Address of the program to be debugged in D

Process:
Get Vector-Address
Store JMP-Opcode at Vector- iii
Get Entry-Address
Store it at (Vector-Address +1) -
Get Start-Address from keyboard
Save it

We can now return and complete the coding of the
three remaining commands. A further point to
consider involves one of these commands —
namely command R, which displays the contents
of the registers. We do not, of course, want to
display the current contents of the registers while
the debugger is running; instead, we want to look
at the contents of the registers as they were when
the breakpoint occurred. This means that we want
to look at the values that were placed on the stack
by the SWI instruction. However, there will be
other values placed on top of these on the stack by
the time we want to get at them. We could
probably calculate the number of unwanted bytes
on the stack and obtain the register values by
discarding this amount. But a simpler solution is to

THE HOME COMPUTER ADVANCED COURSE 817

NU i TL,
[

[

save the value of the stack pointer as the first
operation after the interrupt occurs, so that it can
be used as a reference. |

In coding the R command, we will assume that
this has been done, so that we can retrieve these
register contents. The structure of the routine is
perfectly straightforward — we simply take each
value in turn without actually pulling them off the
stack and display them with appropriate labels.
The only exception will be the value of S$ — this
should be the value prior to the interrupt and can
be obtained by adding the appropriate amount to

breakpoint. At this point we have to replace the
SWI instruction that caused the break with the
original instruction that it replaced and then pass
control back to that instruction. We can restore the
registers to their original contents easily enough,
simply by using an RTI, which unstacks them all.
We must, however, be careful that the value of the
PC that is unstacked is going to be the value for the
next instruction; since this is one greater than the
value we require, we must adjust the value on the
stack before we return.

the saved value of S that we use to reference the COMMAND G
stacked register values. Data:

| = 3 Breakpoint-Table is a table of 16-bit addresses of
COMMAND R emacs , 2

Data: | Removed-Values is a table of op-codes replaced
Stack-Pointer is the value of the top of stack after with SWIs |

interruptinX — | Next-Breakpoint is 2 number in the range 1 to 16

Single-Byte-Value holds the values of single-byte Stack-Pointer is the saved value of the stack

registers in B | | pointer after the SWI

| Two-Byte-Value holds the values of 16-bit Process:

registers in D
Labels holds the labels for the nine registers —

lf Next-Breakpoint >0 and <=16 then
Get op-code from Removed-Values (Next-
Breakpoint) |

Get Stack-Pointer | Store it at address in Breakpoint-Table (Next-
Load CC into Single-Byte-Value Breakpoint)

A Stack in Time
The debugger program begins
with a BSR call to the
initialisation routine, followed by
the start of the main program
loop. One of the initialisation
tasks is to ascertain the absolute
address of this loop start, and to.
copy it into the interrupt jump
table so that when an SWI is
executed control will pass
through the jump table and back
to the loop start. This address
cannot be known in advance
because the program must be
fully relocatable; fortunately, the
return address stacked by the
BSR is precisely the address in
question, so the initialisation
routine needs merely to copy it
from the stack to the jump table

Display label(1), Single-Byte-Value
Repeat the above for A, B, and DP
Load X into Two-Byte-Value
Display label(5), Two-Byte-Value
Repeat the above for Y, U and PC
Add 12 to original value of Stack-Pointer
Display label(9), Stack-Pointer

- There are two remaining commands: Q, to quit the
program, does not need a special routine of its
own; and G, to resume program execution after a

05050505

Set S to Stack-Pointer |
Decrement value of PC on stac
Increment Next-Breakpoint
Return from interrupt

else
Return from subroutine

Our 6809 machine code series concludes in the
next instalment, when we code the main module
of our debugger, and look at the operation of the
program as a whole.

Pe ae

supa aces

ES OE OE EE OE ETE Sessa

EN ee

sacra

aor ca

REST e aU ee

‘Initialisation Procedure
_ To save the start address

JMP-opcode

Get Vector-Address

Get JMP-opcode and

Save it at Vector-Address

Get Entry-Address from the stack

Save it at Vector-Address + 1

Get Start-Address from keyboard

‘Save it

Return

Stack-Pointer

ASCII code for space

Save used registers

Get Stack-Pointer

Use Y to point to label

Number of single byte registers

Display next register

four times

Number of two byte registers

Display next register

four times

First character of label

Displayit

Second character of label

Display it
_ Display space

X now contains the required

value of S

Display S _

Restore and return

Save A

First character of label

Display it

Second character of label

Display it

Display space

Get next register into Single-Byte

-Value

_ Display Single-Byte-Value

Restore A and return

Save A

First character of label

Display it

START RMVB 2

OPJMP FCB SOE

INT 2 =—=—SCOLDX SFA
LDA OPJMP, PCR

SIA , Xt

by 15

SlY A

BSR GETADD

91D SIARI,PCR

RIS

Command R
STACKP RMB 2

LABELS ~=—»FCG ‘CC ABDP XY

UPCS

SPACE FCB 32

CMDR PSHS)»=6—ABXY

LDX SIACKP, PCR

LEAY LABELS, PCR

LDA #4

FORO BSR CMDR1

DECA

BGI FORO]

LDA #4

_FORO2 BSR GMDR2

DECA

BGT FORO2

LDA Y+

BSR ~=QUICH

LDA Y+

BoR QUITCH

LDA SPACE,PCR

BOR OUTGH

TFR X,D

BSR DSPADD

PULS A,B,X,Y,PC

*Subroutine to display a single byte register

CMDR1 PSHSo =A

LDA ,Y+

BSR OUICH

LDA Y+

BoR QUICH

LDA SPACE,PGR

BOR OQUICH

LDB Xt

BSR DSPVAL

PULS =A,PC

*Subroutine to display a two byte register

GMDR2 £-PSHS A

LDA Y+

BSR QUICH

Command G
BPIAB
REMIAB
NEXT BP
CMDG

[FO4

ENDFO4

LDA
BSR
LDA
BSR
LDD

BSR
PULS

RMB
RMB
RMB
PSHS
LDA
BLE
CMPA
BGT

DECA
LEAX
LEAY
LDB
LSLA

SIIB

LDS
DEC
ING
Ril
PULS

vt
OUTGH
SPACE,P-CR
OUTCH
Att

DSPADD
A,PC

NEXTBP,PCR
ENDFO4
MAXBP,PCR
ENDFO4

BPTAB,PCR
REMIAB,PCR
A,Y

[A,X]

STACKP,PCR
10,9
NEXTBP,PCR

APC

Second character of label

Display it

Display space

Get next register into Two-Byte

-Value

Display Two-Byte-Value

Restore A and return

Breakpoint- fable

Removed-Values

Next-Breakpoint

Save Ain case we do a normal return

Next-Breakpoint

If Next-Breakpoint 0

and <=16

(maximum number of

_ breakpoints)

Convert to offset into table

Address of Breakpoint- Table

Address of Removed- Values

Get Removed-Value

Convert A to offset for 16-bit table

Store it at address in Breakpoint-

Table

Get Stack-Pointer into $

Adjust value of PC on stack

_ Increment Next-Breakpoint

Return from interrupt

Restore and return

THE HOME. COMPUTER ADVANCED COURSE 819

Starfinder: For the BBC Micro and the Electron
£12.95.
Publishers: Century Software, Portland House, 12-13
Greek Street, London, W1V 5LE.
Authors: Book by Heather Couper, program by
Ronald Alpiar. ;
Joysticks: Not Required.
Format: Cassette.

Here, courtesy of Zilog Inc., we publish the final part of the Z80 programmers’ reference card.

Call and Return Groups and Restart
Call and Return Group

CONDITION =

Note: Certain flags have more than one purpose.
Reter to the 280 CPU Technical Manual for details.

Restart Group

| ‘ast o’

RST 8

SRST 16

‘RST 24°

AAST 32°

[RST 40°

‘|SRST 48°

| RST 56°

No.of No.of M No.of T Symbolic Flags Opcode
Mnemonic Operation Ss Z H PIV N C_ 76 543 210. Hex Bytes Cycles States Comments

«CALL on (SP-— 1) — PCy * © KX © § © © © Fh hl 3 5 V7
(SP - 2) PO = — — nO ~
FC — fo]

CALL cc, nn It condition see eer em hUmrhUh 11 ce 100 3 3 10 ll cc is false.
cc iS faise —- no |
continue. -— fA | 3 5 17 it cc is true
Oe wise Same as

CALL a6

RET FF & — . .rsiC“‘sCi‘“‘“éiOCOsisCisCSSS:CtSCUCCC 3 10
Foe - GPa :

REE cc Hcondiion * © ~* © F © & 8 tt ec O00. 1 : 5 fcc i false

cc is false |
CONHNUE, ‘ 3 it fcc Ss rue
omerwise co Condition
Same as O00 NZ non zero.
RET 601 Z zero

— O10 NU fson-carry

RET Return from » = «KX © eK te F 7 oto ssi 4 Ol CC Gary
nterrupl O00) 0 4D — 300 PO panty add

REIN Return from *) §* KF et 7 1 De 4 14 101 PE parity even _
non-maskable 0. ceo io 4G 110 PR sign positive
Mlerupt — co 111M. Sign negative

RST pb (SP 1) — PCR * ©* KX © «te te td oo 3 ae fgo7Sne

S | _ 001 08H
— 010 10H

011 18H
100. 20H

101. 28H
110. 30H

f15 Seu

NOTE (REIN Igads [Fro EE

flag Notation. @

ae i tet

flag nol aliected 0 = fac reset (= fag sel x = flag 6 unknown:
flag is allecied according (0 (ie result oF ine operation.

nc

=

